MTH 211, Math for Architects, Spring 2014

Ayman Badawi

QUESTION 1. Draw a circle with radius 4 cm , say C, centered at a point, say O. Let Q be a point inside C such that $|O Q|=2 \mathrm{~cm}$. What is the smallest radius of the circle M, where M is orthogonal (perpendicular) to C and it passes through Q ?

QUESTION 2. Let C and Q as in the previous question. Convince me that there is a circle D with radius $\sqrt{10}$ such that D is orthogonal to C and it passes through Q. Show the steps that you will follow in order to construct such D, you may use marked ruler.

QUESTION 3. Draw a circle with radius 6 cm , say C. Let F and W be points on the circle C such that $F W$ is not a diameter of C. Now consider the line $F W$. Construct the inversion of the line $F W$ with respect to C. You are allowed to use a marked ruler.

QUESTION 4. Let C be a circle centered at O and with radius 5 cm . Let A, B be points on C such that $A B$ is not a diameter of C. First construct a circle, say L, passes through A, B, and O. Construct the inversion of L with respect to C.

QUESTION 5. Let C be a circle centered at O and with radius 4 cm . Let A and B be points such that O, A, B are not co-linear, $|O A|=8 \mathrm{~cm}$ and $|O B|=2 \mathrm{~cm}$. Construct the inversion of the line SEGMENT $A B$ with respect to C.

QUESTION 6. Given a circle M and a line $E G$, see below. Construct a circle L such that L is orthogonal to M, L

passes through F, and the line $E G$ is a tangent line to L at F.

QUESTION 7. Let C be a circle with radius 4 centered at O. Let A be a point on C. Let B, D be points on $O A$ such that $|O B|=1$ and $|O D|=2$. Construct the inversion of the line segment $B D$ with respect to C. Then find $|\operatorname{inv}(B) \operatorname{inv}(D)|$.
QUESTION 8. (i) What are the types of lines in the non-Euclidean hyperbolic geometry?
(ii) One of the axioms of the hyperbolic geometry is not true in the Euclidean Geometry. What am I talking about!!!?
(iii) Let H be a circle with radius 6 centered at O. Construct a circle L with radius 4 centered at O. Let A, B be points on L such that $A B$ is not a diameter of L. Inside H, construct the non-Euclidean triangle $A O B$. Find $d_{H}(A, B), d_{H}(O, A)$, and $d_{H}(O, B)$. To calculate these non-Euclidean distances use marked ruler (give your answer to the nearest one decimal).
QUESTION 9. Let H be a hyperbolic circle with radius 4. Let B be a point on H (so B is a horizon point). Construct two parallel hyperbolic lines, say L_{1} and L_{2}, such that L1 meets L2 at B. State briefly the steps of construction.
QUESTION 10. Let C be a circle of radius 2 cm with CENTER O, and $A B C$ is a triangle such that $|O A|=|O B|=$ 4 , and $|O C|=8$. Sketch the inversion of the triangle ABC with respect to the circle C . what is the Euclidean distance between $\operatorname{Inv}(\mathrm{A})$ and $\operatorname{Inv}(\mathrm{C})$.
QUESTION 11. Let D be a rectangle 6×3. We want to remove the line segments that connect the vertices of D and replace them with SOMETHING you select but no line segments are allowed in order to use many pieces of the new object to tile a plane. DRAW ONE IMAGE of the new object that you selected.
QUESTION 12. We want to tile a plane using pieces of regular 8 -gon and pieces of another regular n-gon. STATE ALL POSSIBILITIES of the other regular n-gon. JUSTIFY YOUR ANSWER. If V is a vertex of one piece of a regular 8-gon, How many pieces of regular 8-gon and how many pieces of the other regular n-gon share the vertex V
QUESTION 13. (i) To tile a floor, we may use pieces of a regular 12 -gon with pieces of one of the following regular n-gon :
a) regular 4-gon
b) regular 6-gon
c) regular 5-gon
d) regular 3-gon.
(ii) To tile a floor, we may use pieces of regular 12-gon with:
a) pieces of regular 6-gon and pieces of regular 3-gon b) nothing else (only pieces of regular 12-gon) c) pieces of regular 6-gon and pieces of regular 4-gon. d) pieces of regular 4-gon and pieces of regular 8-gon
(iii) To a tile a floor, we may use pieces of regular 8 -gon with:
a) pieces of regular 3-gon
b) pieces of regular 4-gon
c) pieces of regular 12-gon
d) nothing else (only pieces of regular 8-gon)
(iv) The measurement of each interior angle of a regular 10-gon is
a) 36
(b) 144
c) 100
108
(v) The measurement of each center angle of a regular 15-gon is
a) 156
b) 12
c) 24
d) 225
(vi) One of the following is constructible by unmarked ruler and a compass:
a) regular 21-gon
b) regular 22-gon
c) regular 34-gon
d) regular 50-gon
(vii) Given C is a circle centered at O and with radius 6 cm . Let A be a point such that $|O A|=3$. Let $\operatorname{Inv}(A)$ be the inversion of A with respect to C. Then $|\operatorname{OInv}(A)|=$
a) 2
b) 12
c) 9
d) 4.5
(viii) If a regular n-gon is constructible, then the angle (180/n) is constructible.
a) True
b) False
(ix) If an angle α is constructible, then the angle $\alpha / 16$ is constructible.
a) True
b) False
(x) Let C be a circle centered at O and with radius 3. Given A is a point such that $|O A|=1$ and D is a circle orthogonal to C and passing through A. Then one of the following values is a possibility for the radius of D :
a)3 b)5
c) 3.5
d) 2
(xi) Let H be the horizon circle (the model for non-Euclidean) with radius 4 and centered at O. Let A be a point in H such that $|O A|=3$. Then the non-Euclidean distance between O and A is :
a) $\ln (3)$
b) $\ln (7)$
c) $\ln (9)=2 \ln (3)$
d) $\ln (4)$
(xii) In non-Euclidean (hyperbolic) geometry, if a, b are two points, then
a) There are infinitely many lines pass through a and b
b) There is exactly one circle passes through a and b
c) There is exactly one line passes through a but not through b
d) There is exactly one line passes through a and b.

Faculty information

